p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C23.67C24, C24.146C23, C42.109C23, C22.126C25, C4.852+ 1+4, C22.222+ 1+4, D42⋊20C2, (C4×D4)⋊61C22, C4⋊D4⋊91C22, C4⋊C4.314C23, C23⋊3D4⋊12C2, C4⋊1D4⋊23C22, (C2×C4).116C24, (C23×C4)⋊50C22, C22≀C2⋊13C22, (C2×D4).318C23, C4.4D4⋊37C22, (C22×D4)⋊43C22, C22⋊C4.44C23, C22⋊Q8⋊100C22, (C2×Q8).302C23, C42.C2⋊20C22, C22.19C24⋊40C2, C22.32C24⋊15C2, C42⋊2C2⋊13C22, C42⋊C2⋊54C22, C22.29C24⋊28C2, C22.54C24⋊5C2, (C22×C4).386C23, C2.55(C2×2+ 1+4), C22.D4⋊16C22, C22.34C24⋊18C2, C22.47C24⋊28C2, (C2×C4⋊D4)⋊74C2, (C2×C4⋊C4)⋊86C22, (C2×C4○D4)⋊45C22, (C2×C22⋊C4)⋊59C22, SmallGroup(128,2269)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.126C25
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=g2=a, ab=ba, dcd-1=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=fcf=bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1228 in 635 conjugacy classes, 384 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C23×C4, C22×D4, C2×C4○D4, C2×C4⋊D4, C22.19C24, C23⋊3D4, C22.29C24, C22.32C24, C22.34C24, D42, C22.47C24, C22.54C24, C22.126C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4, C22.126C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 23)(2 22)(3 21)(4 24)(5 29)(6 32)(7 31)(8 30)(9 20)(10 19)(11 18)(12 17)(13 25)(14 28)(15 27)(16 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 32)(3 9)(4 30)(5 21)(6 14)(7 23)(8 16)(10 26)(12 28)(13 20)(15 18)(17 22)(19 24)(25 29)(27 31)
(1 11)(2 10)(3 9)(4 12)(5 21)(6 24)(7 23)(8 22)(13 20)(14 19)(15 18)(16 17)(25 29)(26 32)(27 31)(28 30)
(1 21 3 23)(2 22 4 24)(5 9 7 11)(6 10 8 12)(13 25 15 27)(14 26 16 28)(17 30 19 32)(18 31 20 29)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,23)(2,22)(3,21)(4,24)(5,29)(6,32)(7,31)(8,30)(9,20)(10,19)(11,18)(12,17)(13,25)(14,28)(15,27)(16,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,32)(3,9)(4,30)(5,21)(6,14)(7,23)(8,16)(10,26)(12,28)(13,20)(15,18)(17,22)(19,24)(25,29)(27,31), (1,11)(2,10)(3,9)(4,12)(5,21)(6,24)(7,23)(8,22)(13,20)(14,19)(15,18)(16,17)(25,29)(26,32)(27,31)(28,30), (1,21,3,23)(2,22,4,24)(5,9,7,11)(6,10,8,12)(13,25,15,27)(14,26,16,28)(17,30,19,32)(18,31,20,29)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,23)(2,22)(3,21)(4,24)(5,29)(6,32)(7,31)(8,30)(9,20)(10,19)(11,18)(12,17)(13,25)(14,28)(15,27)(16,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,32)(3,9)(4,30)(5,21)(6,14)(7,23)(8,16)(10,26)(12,28)(13,20)(15,18)(17,22)(19,24)(25,29)(27,31), (1,11)(2,10)(3,9)(4,12)(5,21)(6,24)(7,23)(8,22)(13,20)(14,19)(15,18)(16,17)(25,29)(26,32)(27,31)(28,30), (1,21,3,23)(2,22,4,24)(5,9,7,11)(6,10,8,12)(13,25,15,27)(14,26,16,28)(17,30,19,32)(18,31,20,29) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,23),(2,22),(3,21),(4,24),(5,29),(6,32),(7,31),(8,30),(9,20),(10,19),(11,18),(12,17),(13,25),(14,28),(15,27),(16,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,32),(3,9),(4,30),(5,21),(6,14),(7,23),(8,16),(10,26),(12,28),(13,20),(15,18),(17,22),(19,24),(25,29),(27,31)], [(1,11),(2,10),(3,9),(4,12),(5,21),(6,24),(7,23),(8,22),(13,20),(14,19),(15,18),(16,17),(25,29),(26,32),(27,31),(28,30)], [(1,21,3,23),(2,22,4,24),(5,9,7,11),(6,10,8,12),(13,25,15,27),(14,26,16,28),(17,30,19,32),(18,31,20,29)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2R | 4A | 4B | 4C | ··· | 4S |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | 2+ 1+4 |
kernel | C22.126C25 | C2×C4⋊D4 | C22.19C24 | C23⋊3D4 | C22.29C24 | C22.32C24 | C22.34C24 | D42 | C22.47C24 | C22.54C24 | C4 | C22 |
# reps | 1 | 2 | 1 | 4 | 2 | 4 | 2 | 8 | 4 | 4 | 2 | 4 |
Matrix representation of C22.126C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 4 |
0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 |
1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 |
0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 2 | 0 | 4 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 |
2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 |
2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0],[1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,3,0,4,0,0,0,0,0,0,3,0,4,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0,2,0,0,0,0,4,0,4,0,0,0,0,0,0,4,0,4],[0,2,0,2,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,2,0,2,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,3,0,0,0,0,0,0,4,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C22.126C25 in GAP, Magma, Sage, TeX
C_2^2._{126}C_2^5
% in TeX
G:=Group("C2^2.126C2^5");
// GroupNames label
G:=SmallGroup(128,2269);
// by ID
G=gap.SmallGroup(128,2269);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,723,2019,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=g^2=a,a*b=b*a,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=f*c*f=b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations